專欄文章

專欄文章

(資料整理中)

iThome 鐵人賽 2025

快速掌握資料結構與演算法

天數 標題 連結
Day 1 (Day 1) 介紹與準備 Blog / iThome
Day 2 (Day 2) 陣列 (Array) Blog / iThome
Day 3 (Day 3) 矩陣 (Matrix) Blog / iThome
Day 4 (Day 4) 鏈表 (Linked List) Blog / iThome
Day 5 (Day 5) 堆疊 (Stack) Blog / iThome
Day 6 (Day 6) 隊列 (Queue) Blog / iThome
Day 7 (Day 7) 二元樹 (Binary Tree) Blog / iThome
Day 8 (Day 8) 平衡樹 (Balanced Tree) Blog / iThome
Day 9 (Day 9) 其他樹 (Other Trees) Blog / iThome
Day 10 (Day 10) 圖 (Graph) Blog / iThome
Day 11 (Day 11) 演算法評估 (Algorithm Analysis) Blog / iThome
Day 12 (Day 12) 氣泡排序 (Bubble Sort) Blog / iThome
Day 13 (Day 13) 選擇排序 (Selection Sort) Blog / iThome
Day 14 (Day 14) 插入排序 (Insertion Sort) Blog / iThome
Day 15 (Day 15) 基礎排序演算法比較 Blog / iThome
Day 16 (Day 16) 二元搜尋 (Binary Search) Blog / iThome
Day 17 (Day 17) 內插搜尋 (Interpolation Search) Blog / iThome
Day 18 (Day 18) 分治法 (Divide and Conquer) Blog / iThome
Day 19 (Day 19) 動態規劃 (Dynamic Programming) Blog / iThome
Day 20 (Day 20) 貪婪演算法 (Greedy Algorithm) Blog / iThome
Day 21 (Day 21) 圖演算法 (Graph Algorithm) Blog / iThome
Day 22 (Day 22) Dijkstra 最短路徑演算法 (Dijkstra’s Algorithm) Blog / iThome
Day 23 (Day 23) Bellman-Ford 演算法 Blog / iThome
Day 24 (Day 24) Floyd-Warshall 演算法 Blog / iThome
Day 25 (Day 25) A* 搜尋演算法 (A-star Search) Blog / iThome
Day 26 (Day 26) 最小生成樹 (Minimum Spanning Tree) Blog / iThome

30 天入門常見的機器學習演算法

天數 標題 連結
Day 1 (Day 1) 介紹與準備 Blog / iThome
Day 2 (Day 2) 線性迴歸 (Linear Regression) Blog / iThome
Day 3 (Day 3) 多項式迴歸 (Polynomial Regression) Blog / iThome
Day 4 (Day 4) 正規化迴歸 (Regularization Regression) Blog / iThome
Day 5 (Day 5) 邏輯迴歸 (Logistic Regression) Blog / iThome
Day 6 (Day 6) 邏輯迴歸 (多項式 + 正規化) Blog / iThome
Day 7 (Day 7) 回顧迴歸:從線性邏輯到學習本質 Blog / iThome
Day 8 (Day 8) K-近鄰 (K-Nearest Neighbors) Blog / iThome
Day 9 (Day 9) 樸素貝氏分類器 (Naive Bayes Classifier) Blog / iThome
Day 10 (Day 10) 支援向量機 (Support Vector Machine) Blog / iThome
Day 11 (Day 11) 二元分類任務驗證指標 Blog / iThome
Day 12 (Day 12) 多元分類任務驗證指標 Blog / iThome
Day 13 (Day 13) 迴歸任務驗證指標 Blog / iThome
Day 14 (Day 14) 決策樹 (Decision Tree) Blog / iThome
Day 15 (Day 15) 隨機森林 (Random Forest) Blog / iThome
Day 16 (Day 16) K-Means Blog / iThome
Day 17 (Day 17) 淺談深度學習 (Deep Learning) Blog / iThome
Day 18 (Day 18) 全連接神經網絡 (Fully Connected Neural Network) Blog / iThome
Day 19 (Day 19) 神經元 (Neuron) Blog / iThome
Day 20 (Day 20) 激活函數 (Activation Function) Blog / iThome
Day 21 (Day 21) 卷積神經網絡 (Convolutional Neural Network) Blog / iThome
Day 22 (Day 22) 深度學習中的正規化與正則化 (Regularization in Deep Learning) Blog / iThome
Day 23 (Day 23) 深度學習中的優化方法 (Optimization in Deep Learning) Blog / iThome
Day 24 (Day 24) Adam 優化器 (Adaptive Moment Estimation) Blog / iThome
Day 25 (Day 25) 循環神經網路 (Recurrent Neural Network) Blog / iThome
Day 26 (Day 26) 長短期記憶 (Long Short-Term Memory) Blog / iThome
Day 27 (Day 27) 閘控循環單元 (Gated Recurrent Unit) Blog / iThome
Day 28 (Day 28) Seq2Seq (Encoder Decoder with RNN, LSTM, GRU) Blog / iThome
Day 29 (Day 29) 注意力機制 (Attention Mechanism) Blog / iThome
Day 30 (Day 30) 系列結尾 Blog / iThome