天數 |
標題 |
連結 |
Day 1 |
(Day 1) 介紹與準備 |
Blog / iThome |
Day 2 |
(Day 2) 線性迴歸 (Linear Regression) |
Blog / iThome |
Day 3 |
(Day 3) 多項式迴歸 (Polynomial Regression) |
Blog / iThome |
Day 4 |
(Day 4) 正規化迴歸 (Regularization Regression) |
Blog / iThome |
Day 5 |
(Day 5) 邏輯迴歸 (Logistic Regression) |
Blog / iThome |
Day 6 |
(Day 6) 邏輯迴歸 (多項式 + 正規化) |
Blog / iThome |
Day 7 |
(Day 7) 回顧迴歸:從線性邏輯到學習本質 |
Blog / iThome |
Day 8 |
(Day 8) K-近鄰 (K-Nearest Neighbors) |
Blog / iThome |
Day 9 |
(Day 9) 樸素貝氏分類器 (Naive Bayes Classifier) |
Blog / iThome |
Day 10 |
(Day 10) 支援向量機 (Support Vector Machine) |
Blog / iThome |
Day 11 |
(Day 11) 二元分類任務驗證指標 |
Blog / iThome |
Day 12 |
(Day 12) 多元分類任務驗證指標 |
Blog / iThome |
Day 13 |
(Day 13) 迴歸任務驗證指標 |
Blog / iThome |
Day 14 |
(Day 14) 決策樹 (Decision Tree) |
Blog / iThome |
Day 15 |
(Day 15) 隨機森林 (Random Forest) |
Blog / iThome |
Day 16 |
(Day 16) K-Means |
Blog / iThome |
Day 17 |
(Day 17) 淺談深度學習 (Deep Learning) |
Blog / iThome |
Day 18 |
(Day 18) 全連接神經網絡 (Fully Connected Neural Network) |
Blog / iThome |
Day 19 |
(Day 19) 神經元 (Neuron) |
Blog / iThome |
Day 20 |
(Day 20) 激活函數 (Activation Function) |
Blog / iThome |
Day 21 |
(Day 21) 卷積神經網絡 (Convolutional Neural Network) |
Blog / iThome |
Day 22 |
(Day 22) 深度學習中的正規化與正則化 (Regularization in Deep Learning) |
Blog / iThome |
Day 23 |
(Day 23) 深度學習中的優化方法 (Optimization in Deep Learning) |
Blog / iThome |
Day 24 |
(Day 24) Adam 優化器 (Adaptive Moment Estimation) |
Blog / iThome |
Day 25 |
(Day 25) 循環神經網路 (Recurrent Neural Network) |
Blog / iThome |
Day 26 |
(Day 26) 長短期記憶 (Long Short-Term Memory) |
Blog / iThome |
Day 27 |
(Day 27) 閘控循環單元 (Gated Recurrent Unit) |
Blog / iThome |
Day 28 |
(Day 28) Seq2Seq (Encoder Decoder with RNN, LSTM, GRU) |
Blog / iThome |
Day 29 |
(Day 29) 注意力機制 (Attention Mechanism) |
Blog / iThome |
Day 30 |
(Day 30) 系列結尾 |
Blog / iThome |